SPATIAL FREE CONVECTION OF NONLINEARLY VISCOQUS
FLUIDS AROUND AXISYMMETRIC BODIES
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and E. A. Zal'tsgendler

The influence of the transverse curvature of axisymmetric bodies and the concentration
factor on the friction and heat and mass exchange under the conditions of free spatial con~
vection of nonlinearly viscous fluids is determined from the solution of nonlinear boundary
value problems.

Free convection in rheologically complex media has attracted considerable attention in recent years
{1, 2]. It has been shown in a number of experimental researches [3, 4] that many flowing media exhibit
nonlinearly viscous properties for the range of shear velocities realizable under free convection conditions,
and can be described by a "power~law" rheological equation of state. Plane problems of the free convection
of a non-Newtonian fluid have been examined in [1-4], while the Stewart paper on the spatial problem should
be noted [5]. However, spatial problems of the free convection of nen-Newtonian fluids around slender
bodies of revolution (the boundary layer thickness is commensurate with the radius of the body of revolution)
have not generally been considered up to now. Such problems are often encountered in applications, espe~
cially in probe measurement techniques and the remote control of technological processes. Analogous
problems of dynamics and heat exchange have been considered in a number of papers, of which [6, 7] can
be noted, for forced convection conditions.

The dimensionless equations of a three-dimensional stationary boundary layer for the problem of
thermal free convection of a nonlinearly viscous fluid around a vertical slender body of revolution, neglect-
ing the temperature dependence of the physical properties (except the density in the "1ift" term in the equa-
tion of motion) are
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The generalized Pr number is quite large, as a rule, for trickling highly viscous fluids. Hence, the ther-
mal boundary layer thickness is much less than the dynamic boundary layer thickness. Consequently, the
contribution of the inertial terms within the thermal boundary layer is negligible [1, 5]. Moreover, for
slender bodies of revolution ¢; = 0, hence, ay = 1 can be assumed in the equations of motion (1). Then
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The boundary conditions (4) are hence modified to the form [2, 5]

u=v=0, 0=1 at y=0;
ou 9

—0, 60 as - y— 0.
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After having introduced the new dependent and independent variables and parameters
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where ¥ is determined from the continuity equation ru = 9¥ /3y, rv = —9¥ /0x, the system (6)-(9) is con-
verted into the two equations
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with the boundary conditions

fef=08=1 a =0,

(16)
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The following functional relations
&~ Urg, B0~ U BT U 1
result from the requirement of self-similarity of the problem. We obtain
3n+1 o '
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from the first two relationships of the system (17). Substituting (18) into the last expresssion of the sys-
tem (17) yields
Uﬂﬂv—Bn—l+3nv+v+avn+o¢v ~ const, (19)
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from which there must follow
npy — 3n— 1 - 3ny 4y < ayn —ay = 0.

The relationship (19) is the single connection between the unknowns «, 3, y which can be determined from
the system (17).

Going over to the physical variables, by using (10) and (17), yields the second equation
4ny - Sany — dany® — 3n — 1+ nfy — 2oy —y — afny? — yiin — Py —ay? = 0. (20)

Moreover, the functional relationship
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is obtained.

The system of two nonlinear algebraic equations (19), (20) in the three unknowns a, 8, vy admits of a
unique solution for a:

o =—1 (22)

and a set of solutions for B and y. However, there must exist a connection between S and v

1 n
Y6+ Barl #
Equations (21)-(23) turn out to be sufficient for the determination of the self-similarity conditions
U=xF | rp=cx (24)
In order to eliminate the constants from the system (14)-(15), it is necessary to demand
a =yt b= ITEY Y (25)

It should be noted that according to (25), the parameters a and b take on distinct values depending
on the selection of specific values of 8 and v satisfying (23).

Therefore, the problem reduces to a system of nonlinear ordinary differential equations
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with the boundary conditions (16), wherein besides the rheological parameter n, an additional parameter
A is contained which reflects the influence of the transverse curvature. The local heat exchange and fric-
tion coefficients are determined from the formulas

1 n RIS

Nu = — 0’ (O) Gr 2n-t1) Pr 3n+-1 I 3n—1

! nt2 n (28)
Cj =9 Uw (O)]'l GI’ 2(n+1) Pr 3n4-1 X 3n—1 .
The average coefficients equal, respectively,
Nt e i&n -1 0’ (0) G2 pp T
1 n=-2 (29)
o 2(3n--1) [ ()7 Gr 2070 py ntT
’ 3n -2

The solution of this problem has been obtained on the Minsk-22 electronic computer by a modified
Newton method. Some results of the computation are presented in Fig. 1a. The transverse curvature
parameter affects —@' (0) and " (0) quite strongly, and therefore, also affects the heat exchange and friction
coefficients of slender bodies of revolution. The weak dependence of —@' (0) on the non-Newtonian behavior
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parameter should be noted. Moreover, if magnification of the non-Newtonian properties results in a
diminution in the quantity —@'(0) for small values of the curvature parameter, then the opposite tendency
(Fig. la) is observed for large values of A. A diminution in the parameter n results in 2 sharper depen-
dence of £ (0) on the values of A. The quantity f"(0) itself depends essentially on the index n of non-New-
tonian behavior, and the more strongly, the greater the parameter A.

Thus, in those cases when the boundary layer thickness is commensurate with the radius of the body
of revolution, the influence of the transverse curvature on the heat exchange and flow processes is quite
significant.

Free convection can be caused not only by a thermodynamic factor (the gradient of the temperature
field), but also by a chemical factor (the gradient of the concentration field). Hence, a simultaneous anal-
ysis of the influence of these factors on the free convection process is of interest. The equations of a two-
component spatial boundary layer for the free convection problem of a non-Newtonian fluid around a slender
body of revolution in the approximation used in [8] and neglecting thermal diffusion and diffusion heat con-
duction differ from the system (1)-(3) by the presence of the term r®,cos o due to the concentration lift,
in the right side of (1) and by an additional equation for the diffusion of one of the components
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The boundary conditions are

u=v=00,=0,=1 a y=0

u—0,0,—-0, 0,>0 at y— oo.

When the boundary layer thickness is much less than the radius of the body of revolution (6 / r; <« 1), the
system (1)~(@3) is modified in such a way that the quantity r enters only in the continuity equation (2), but
not in (3) and (4). The case of a slender body of revolution is considered henceforth, The case &/ r; <1
is considered at the end of the paper.

Performing manipulations analogous to those elucidated above yields the system of equations
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It is hence necessary to replace x by x| in the variables (10)-(12) because the motion can be directed
upward (x >0, f' >0, u > 0) or downward x <0, f! <0, u < 0) depending on Pry, Pr,, and K. The heat
exchange and friction coefficients are determined by means of (28) and (29) and the local mass-exchange
coefficients by '
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The following picture of the motion results from physical considerations, If Pr; = Pry, then if the signs
of the temperature and concentration lifts agree the medium moves to one side in the whole flow domain
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(the sign of f'(n) and therefore of u agrees with the sign of the lift), When the signs of the lift are distinct,
namely, if one lift dominates in the whole domain, then just flow retardation holds; as the second lift grows
the flow at the wall is slowed down still more, until there is a zone of oppositely directed flow near the
surface which gradually extends into the whole flow domain as this moving force grows further.

If Pry = Pry, no oppositely directed flows originate since the thermal and concentration boundary
layer thicknesses are equal, When K > -1, the medium moves upward, while oppositely directed flows
hold for K < -1 and, finally, the flow isat rest for K = -1,

The system (30)-(33) was solved numerically on a Minsk-22 electronic computer for Pry = Pr,. Some
results of the computations are present in Fig. 1b and ¢. The heat and mass exchange, as well as the fric-
tion, depend substantially on the ratio Gry, /Gr and the curvature parameter. As the curvature parameter
increases, the quantity —-@i,z (0) grows. Fordiverse values of the ratio Gr, /Gry the curves of the dependences
are almost equidistant (Fig. 1b). This equal distance is retained within each family constructed according
to the non-Newtonian behavior parameter. In contrast to —@172(0), the quantity f*(0) depends quite strongly
on the flow index n (Fig. lc).

When the boundary layer thickness is much less than the radius of the body of revolution (5 /r; <1),
the spatial axisymmetriec problem is reduced to the system (30)-(32) (the A = 0 case) by introduction of the
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The heat- and mass-exchange coefficients are hence written, respectively, as
n 1 n ~___.l
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In particular cases:

1) sphere, cosay = sinx, ry= sinx;

2) cone, cosay = const, ry=xsinay;

3) three-dimensional stagnation point, cosay = x, 1§ = X;
4) vertical cylinder,cosay =1, ry =1,

Plane problems of free convection of a binary mixture of a non-Newtonian fluid (particularly free
convection around: 1) a vertical plate; 2) a horizontal cylinder; 3) a two-dimensional stagnation point; 4)
a wedge) reduce to the system (30)-(32) (the case A = 0), In this case, the introduction of new variables

- proposed in [1]} with the quantity x replaced by x| therein is necessary.

NOTATION
x', y' are the dimensional coordinates;
u, v' are the dimensional velocities;
r is the dimensional radial coordinate;
T is the absolute temperature;
Ty is the absolute temperature at the wall;
T is the absolute temperature as y' — «;
Cy is the concentration at the wall;
Ce is the concentration as y' — «;
A is the heat conductivity;
B is the coefficient of thermal volume expansion;
L is the characteristic length;
g is the free fall acceleration;
k is the consistency coefficient;
n is the non-Newtonian behavior parameter;
A is the modified stream function;

Pr = pcplLgB (To—Tw)I/2L
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r

is the modified Prandtl number

is the modified Grasshopf number;

is the radius of the body of revolution;

0
1, £M), & 5(n) are the self-similar variables;
A ’ is the curvature parameter;
Nu is the Nusselt number;
cf is the friction coefficient.
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